霜之朝

注册

 

发新话题 回复该主题

概率论和统计学中的巨匠数学与水晶球 [复制链接]

1#
北京看白癜风去哪个医院最好 http://www.txbyjgh.com/m/

在前文中,我们了解了一些概率论中的基本内容,包括条件概率和贝叶斯定理等。本文我们将了解作为数学学科的概率论与统计学是如何发展到现在的。当然,这是一个极简化的过程。有诸多非凡的学者,是他们的工作让概率与统计不再只是游戏,而是成为了可以真正指导人们生活的水晶球。

撰文

JosephMalkevitch(纽约市立大学约克学院数学与计算机系荣誉教授)

编译

施昊

所谓事后诸葛,就是人们会看到从当下发展到未来时到底发生了什么,并且会说如果回到过去会如何。下面将要呈现的是,作为一门数学学科的概率论是如何发展的一个极简化的探究过程。我们能发现,概率论相关的数学研究既不局限于某个国家,也不限于那些在其他数学领域闻名的数学家。

另外,在人们最早试图深入了解可能性和概率的概念的时候,人们就有两种不同的想法。一种想法是,基于知识或证据来决定某件事发生的概率,比如飓风是否会袭击纽约,而且这个系统的行为本身包含某种随机性,比如投硬币或掷骰子。从某种角度看,如果人们知道所有的信息,并且运用物理学定律推演,那么我们将知道每次玩转盘、抛硬币、掷骰子等游戏的结果,但显然这是不可能的事情。不过,许多与之相似的过程都存在一些“规律性”的东西,这些才是概率论的研究主题。比如说,如果抛一对均匀的骰子,你将会有多大可能看到两个点数之和等于四呢?

对概率的早期认识

几乎可以肯定的是,在很早时候,那些具有数学天赋的人就意识到了“随机性”,比如作出很大贡献的杰罗拉多·卡拉达诺(GerolamoCardano,-)。卡拉达诺研究了一些在今天看来是组合数学中计数部分的一些问题。他研究了当抛掷三个不同的骰子时最后结果的规律。他想要数出出现8或者9点的方式个数,但是他犯了错误。从现代的观点来看,卡拉达诺不是第一个也不是最后一个出现“错误”的人。为了说明他的错误,我们用下面的例子来阐述。

当我们抛一个均匀的硬币两次,用H表示正面,T表示反面,我们可以写出HH,HT,TH和TT四种结果。这里HT就是第一次是正面,第二次反面,反之亦然。如果我们数正面朝上的次数,答案是0,1或者2次。但是从现在的角度来看,说这三个结果(0,1,2)的可能性也就是P(0个正面)=P(1个正面)=P(2个正面)=1/3,这很奇怪。我们现在会说在抛两次硬币中1个正面朝上的概率是1/2,两次正面朝上或者两次背面朝上的概率是1/4。可是,这个似乎很简单的错误在早期的概率论和组合数学中倒是很常见。事后看来却是显而易见的。

以数学基础研究随机性的“现代”起源要追溯到布莱兹·帕斯卡(BlaisePascal,-)和皮埃尔·德·费马(PierredeFermat,-)的工作。年两人通信探讨了一个赌博游戏中的分配问题。

布莱兹士·帕斯卡

假设有两个赌徒,每一局中他们各自赢的机会相等。有一天,他俩各拿出相同金额的钱作为赌注,约定谁先赢到某个局数(假设是5),赌注就全部归谁。不料,这时有突发事件,他们必须结束赌局并离开。此时,两个人谁也没赢到5盘,那么这个赌注的钱应该怎么分呢?当然,此时赢得多的人应该相应地拿的赌注多。可是,多少才算是公平呢?在通信中,帕斯卡给出了一个公平的分配方案。

有趣的是,信中他还顺带解决了上帝“存在”的问题。虽然如今现代决策论可能被用来决定是否在特定的水下层位置进行石油钻探,这无可厚非,而帕斯卡则用了一个令人惊讶的“现代”分析来解释为什么会有人相信上帝。帕斯卡在这里的讨论遵循了他著名的哲学专著《思想录》中提出的观点:上帝要么存在,要么不存在。每个人都必须决定他在这个问题上的立场,不能“不做决定”。关于上帝是否存在,帕斯卡认为单靠理性不能回答这个问题。可假设上帝存在的概率是有限的。人们可以从你决定坚持的立场来审视这一结果。帕斯卡认为,人们应该像上帝存在那样生活,并去寻找上帝。如果上帝存在,那么人们收益会是“无穷的”——因为信仰上帝而得到福泽;如果上帝不存在,对个人信仰来说损失相对较小对信仰者来说,他们所付出的代价也远小于因上帝存在而得到的福祉。当然,一些人觉得帕斯卡的观点很有说服力,有些人则不然。

让概率论成为数学

第一本关于概率论的“书”似乎是由克里斯蒂安·惠更斯(ChristiaanHuygens,-)所写的。

克里斯蒂安·惠更斯

正如他所处的时代,那本“书”是以拉丁文出版的。而且是作为年弗朗斯·范·舒滕(FransvanSchooten)的数学著作ExercitationumMathematicarumLibriQuinque的“附录”问世——《论赌博中的计算》(DeratiociniisinludoAleae)。因此,除了在一小群致力于发展现代科学和数学思想和工具的知识分子中有影响,这本书的影响有限。

在这项工作不久之后,与随机性和统计相关的观点引起了约翰·格朗特(JohnGraunt,-)对疾病数据的

分享 转发
TOP
发新话题 回复该主题